Ensemble of single-layered complex-valued neural networks for classification tasks

نویسندگان

  • Md. Faijul Amin
  • Md. Monirul Islam
  • Kazuyuki Murase
چکیده

This paper presents ensemble approaches in single-layered complex-valued neural network (CVNN) to solve real-valued classification problems. Each component CVNN of an ensemble uses a recently proposed activation function for its complex-valued neurons (CVNs). A gradient-descent based learning algorithm was used to train the component CVNNs. We applied two ensemble methods, negative correlation learning and bagging, to create the ensembles. Experimental results on a number of real-world benchmark problems showed a substantial performance improvement of the ensembles over the individual single-layered CVNN classifiers. Furthermore, the generalization performances were nearly equivalent to those obtained by the ensembles of real-valued multilayer neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Valued Autoencoders and Classification of Large-Scale Multi-Class Problem

Two-layered neural networks are well known as autoencoders (AEs) in order to reduce the dimensionality of data. AEs are successfully employed as pre-trained layers of neural networks for classification tasks. Most of the existing studies conceived real-valued AEs in real-valued neural networks. This study investigated complexand quaternion-valued AEs for complexand quaternion-valued neural netw...

متن کامل

Single-layered complex-valued neural network for real-valued classification problems

This paper presents two models of complex-valued neurons (CVNs) for real-valued classification problems, incorporating two newly-proposed activation functions, and presents their abilities as well as differences between them on benchmark problems. In both models, each real-valued input is encoded into a phase between 0 and  of a complex number of unity magnitude, and multiplied by a complex-va...

متن کامل

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

Pulse Waveform Synthesis Using Recurrent Complex Valued Neural Networks

Abstract Experiment of time sequential pulse train synthesis using a layered and partially recurrent complex valued neural network is reported A half of the three layer complex valued neural network is used to generate sinusoidal oscillation and the other half to synthesize adaptively the intended pulse shapes and sequences Stable time sequential pulse signals are obtained after completion of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2009